Teacher notes
 Topic A

An instructive relativity problem.

The blue line is the worldline of a rocket moving past earth with speed v. A laser beam is emitted from x $=D$ at $t=0$. When does the beam get to the rocket according to rocket clocks?

Consider the events:
$E_{1}=$ beam is emitted
$E_{2}=$ beam arrives at rocket
For earth, the time between these events is Δt and $\Delta x=v \Delta t$ since the rocket has moved closer to the launch point in the time Δt. Hence

$$
\begin{aligned}
\Delta t^{\prime} & =\gamma\left(\Delta t-\frac{v}{c^{2}} \Delta x\right) \\
& =\gamma\left(\Delta t-\frac{v}{c^{2}} v \Delta t\right)=\gamma \Delta t\left(1-\frac{v^{2}}{c^{2}}\right) \\
& =\gamma \Delta t \frac{1}{\gamma^{2}}=\frac{\Delta t}{\gamma}
\end{aligned}
$$

According to earth $\Delta t=\frac{D}{v+c}$. This is because the distance between the launch point and the rocket is decreasing at a rate $v+c$. This does not violate the speed of light being the maximum possible. No material body is moving at this speed. Hence $\Delta t=\frac{1}{\gamma} \frac{D}{v+c}$.

